A majorization-minimization approach to the sparse generalized eigenvalue problem
نویسندگان
چکیده
منابع مشابه
A D.C. Programming Approach to the Sparse Generalized Eigenvalue Problem
In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as spec...
متن کاملGeneralized Majorization-Minimization
Non-convex optimization is ubiquitous in machine learning. The MajorizationMinimization (MM) procedure systematically optimizes non-convex functions through an iterative construction and optimization of upper bounds on the objective function. The bound at each iteration is required to touch the objective function at the optimizer of the previous bound. We show that this touching constraint is u...
متن کاملThe Sparse Eigenvalue Problem
In this paper, we consider the sparse eigenvalue problem wherein the goal is to obtain a sparse solution to the generalized eigenvalue problem. We achieve this by constraining the cardinality of the solution to the generalized eigenvalue problem and obtain sparse principal component analysis (PCA), sparse canonical correlation analysis (CCA) and sparse Fisher discriminant analysis (FDA) as spec...
متن کاملA Decomposition Algorithm for Sparse Generalized Eigenvalue Problem
Sparse generalized eigenvalue problem arises in a number of standard and modern statistical learning models, including sparse principal component analysis, sparse Fisher discriminant analysis and sparse canonical correlation analysis. However, this problem is difficult to solve since it is NP-hard. In this paper, we consider a new decomposition method to tackle this problem. Specifically, we us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2010
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-010-5226-3